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Swirling flow through a convergent funnel 
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Department of Engineering Mechanics, The University of Michigan, 

Ann Arbor, Michigan 

(Received 11 March 1968) 

The work that follows considers the velocity profiles within the boundary layer 
at the wall of an arbitrarily converging funnel. The occurrence of super-velocities, 
i.e. components of velocity within the boundary layer exceeding their corre- 
sponding free stream component, is investigated and the relevance of such a 
phenomenon to the efficiency of discharge discussed. 

1. Introduction 
Swirling flow in a perfectly conical funnel was first discussed by Taylor 

(1950) when the flow was assumed to have a component of velocity as given by a 
potential line vortex lying along the axis of the cone-an idealization of an agri- 
cultural sprayer. It was shown that the radial pressure gradient which neces- 
sarily accompanies the swirling motion acts on the boundary layer driving it 
along the surface of the cone towards the apex. Within the boundary layer fluid is 
retarded by viscosity and consequently has not sufficient centrifugal accelera- 
tion to hold it in a circular path against the inward radial pressure gradient. 

The natural extension of the problem to include radial as well as swirling flow 
in the mainstream attracted the attention of Binnie & Harris (1950) who, 
using an extension of Taylor's Pohlhausen approach, dealt with swirling main- 
stream flow through a convergent-divergent funnel made up of sections of 
perfect cones of differing semi-angles < 10". A more ideal mathematical ap- 
proach, however, was made by Garbsch (1955, 1956), who considered the flow 
in a perfect cone as a super-imposition of swirl and the flow due to a sink placed 
at the apex. Both the pieces of work mentioned in this paragraph conclude that 
such a flow is exceptional in that it is a case in which viscosity has a favourable 
effect upon the efficiency of discharge. 

Little has been said as to the shape of the velocity profiles occurring in the 
boundary layer at  the wall when both components of velocity exist in the free 
stream. Will the swirl effect within the boundary layer cause the velocity towards 
the apex to exceed the free stream component in that direction (a phenomenon 
which shall henceforward be referred to as ' super-velocity ') '1 That such a 
phenomenon might exist poses an interesting question in itself. However, insight 
into the form of the velocity profile within the boundary layer will perhaps pro- 
vide a better understanding of the aforementioned efficiency increase. 

In  0 2 it is established that under certain conditions there exist similarity solu- 
tions of the boundary-layer equations for swirling flow through a convergent 
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funnel whose boundary is the surface of revolution formed by the rotation of the 
curve ro(x), x being defined as the distance along the funnel wall. The governing 
equations are shown to depend on two parameters pl, y1 involving r,,(x), U(x)- 
the free stream velocity , and G(x)-the boundary-layer thickness. The conditions 
which these functions must satisfy to justify the similarity assumption are 
examined and equations derived which prescribe the form of the radial velocity 
U(x) for which the similarity solutions are valid for general values of (PI, yl). 
However, the conditions established in 92 do not suffice to ensure the existence 
or uniqueness of a corresponding boundary-layer flow and thus 9 3 is devoted to 
reassessing the conclusions of previous authors on systems of equations of a like 
nature and relating them to the governing equations in this case. In  particular, 
a more physical criterion is suggested for selecting the appropriate solution 
when /3 < 0 in the Falkner-Skan equations. This section concludes with some 
tabulated solutions of the equations in which acceptable super-velocity profiles 
are demonstrated for certain values of pl, yl. 

In 494, 5 an approximate method of solution is outlined for general funnel 
shapes whose geometry is incompatible with the similarity assumption. In par- 
ticular the case of the perfect cone is considered and displacement thickness 
estimates obtained by the method are favourably compared with the work of 
previous authors. The assumption that the velocity profiles a t  any point along 
the cone may be related to a particular pair of Bl, y1 enables a comparison of 
profile estimates to be made. In  $ 6  the relationship is outlined and favourable 
profile comparisons are demonstrated including super-velocity comparisons. A 
discussion of the results concludes the paper in 9 7. 

2. The problem 
A steady, laminar and rotationally symmetric flow is generated in a funnel 

whose boundary is the surface of revolution formed by the rotation of the curve 
r = ro(x) where the x co-ordinate is defined as the distance along the funnel wall 
and the co-ordinate at  right angles to the wall is denoted by 2.  The flow can be 
considered as an inviscid flow with a thin boundary layer on the wall of the funnel. 
The free stream comprises a radial component of velocity, such that at  the edge 
of the boundary layer the velocity is given by U(x), together with a superimposed 
swirl velocity A/r,,(x). On the assumption that the boundary-layer thickness 
6 < r,,(x) we have the appropriate boundary-layer equations as 

au au v2dr  dU A2r‘ a% 

a0 av uvdr,, a2v 

ax ax r,, dx a 9 ’  

(1) 

(2) 

u - + tu - - - -0 = u - - - 0 + v - 
ax aa r,dx dx r: r,, a22 ’ 

u-+w-+-- = v- 

a a 
- (rou) + - ( row)  = 0, 
ax az (3) 

where in (1) we have used the assumption that the boundary layer is thin and 
that variation in the pressure, p ,  through its thickness may be neglected. 
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The boundary conditions governing (1)) ( 2 )  and (3) are 

(4) I (i) u = v = O  on z = O ,  

(ii) u+U(x)  and v+A/ro(x)  as x-tm, 

(iii) No flow across the wall. 

After noting from (3) that  there exists a stream function $(x, x )  such that 

the variables are transformed by the substitutions 

FIGURE I 

where S(x) is the boundary-layer thickness. I n  terms of these substitutions we 
have that 

$ = /r&z = r0UJf (5,rl) ,  (7) 

so that with the appropriate substitutions and the similarity assumption the 
momentum equations reduce to 

f”+ay+P(l- f ’2)+y(l-g2)  = 0)  

g”+afg’ = 0 ,  
with bouiidary conditions 

f’(co) = 1, g (c0 )  = 1) f(0) = f’(0) = g ( 0 )  = 0 )  (10) 

where 

are consttints if (8) and (9) are to be solved with the boundary conditions (10). 
37 Fluid Mech. 34 
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The similarity solution can only exist if the functions ro(x) ,  6(x) ,  U ( x )  satisfy 
certain conditions which we now investigate. From (1 1) we have 

2A2J2r;U' 2A2rA 
P, 2yUU' = - - 

vri vri 
and integrating gives 

where a is a constant of integration. 
This makes ro = a where U = 0 but u2 can be replaced by - u2 in the following 

argument to give a case where U > 0 throughout 

&(rob') U' 6U(ro6)' 

vro vr0 
+ = a, 

whence 

(ro6) = constant U(&-NP ( U  > o,P = 0). 

Introducing a non-dimensional constant Ic ,  since 

a !! cc ($ 

and finally 

so that substituting (13) and (18) into (19) gives 

so long as P =+ 2 2a, where xo is a constant of integration. 
If ~3 = 2a we have 

a n d i f p =  -2a 
p ( x - x o )  1 aU -2 y uU 

k2a = -- 2 A  (-) +plog (T). 

The equations (21), (22) and (23) prescribe the form of the radial velocity U ( x )  
for which the similarity solutions are valid for general values of the constants 
a, P, y. Equation (13) then gives the shape of the channel ro(x) and (16) in turn 
gives the form of the boundary-layer thickness 6(x). 
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The case ,8 = 0 U = constant = U, say and so 

Thus 

and if y + 0 then (ro6) = const exp ~ 

(2;t;r 8) 

and again introducing a non-dimensional constant k we have 

and hence 

so that if a $: 0 

which includes three arbitrary constants U,, Ic,  x,. 
The case a = 0 implies 

k2A5r; y = -~ 
Uir i  ’ 

so that 

i.e. 

This last case, however, is seen to be impossible since it implies that 9“ = 0 for 
all y so that g = a +by, i.e. a form which cannot satisfy the boundary conditions 

Finally we note that the equations for f and g contain three parameters a, p, 
y,  but these can be reduced effectively to two since 6(x) is indeterminate to the 
extent of a multiplicative factor. Thus 6(x)  can be scaled arbitrarily with corre- 
sponding scaling off and y, i.e. y = hy, o 6, = A8 andf(y) = hf,(y,). Hence, the 
parameters can be modified to a, = Pa, /I1 = h2P, y1 = h2y, where h must be 
positive. Now af must be > 0 since at  infinity g” < 0 and g’ > 0, but also f > 0 
for large y so that a > 0 allows us to choose h2 = l/a, from which we have 

g ( 0 )  = 0, g (o0)  = 1. 

a, = 1, ,8, = PIa and y ,  = yla. 

The problem thus reduces to the solution of the following equations: 

where 

f”’ +#’I + P I (  1 -f’2) + y,( 1 - g 2 )  = 0, 

g“ + fg‘ = 0, 

f(0) =f’(O) = g ( 0 )  = O;f’(cO) = g ( c 0 )  = 1.  

(33) 

(34) 

(35) 
37-2 
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3. The existence and uniqueness of solutions of the similarity equations 
Although a set of necessary conditions for similar velocity profiles has been 

obtained in the previous section, the solution of the boundary-layer equations 
will exist only if (33) and (34) can actually be solved with the boundary con- 
ditions (35). The conditions (1 1) do not suffice to ensure the existence or unique- 
ness of a corresponding boundary-layer flow. Such questions demand a study 
of the differential equations (33) and (34). However, we note that if y1 = 0, (33) 
reduces directly to the Falkner-Skan equation which both Hartree (1937) and 
Stewartson (1954) have discussed as regards existence and uniqueness of solu- 
tions. 

Hartree (1937) obtained useful information by considering the possible be- 
haviour of the solutions for large y. He showed that if q(7) = l - f (y)  then 
q(y) could be approximated to in terms of the asymptotic expansions of the 
parabolic cylinder functions and in fact as 7 + co 

where 

Thus, if p 2 0 the condition q(co) = 0 requires B = 0 and then q + O  with 
exponential rapidity. On the other hand, if p is negative any expression of the 
form (36) + 0 as 7 + co so that a range of values of f”(0) may give a solution satis- 
fying the condition at  infinity, i.e. there is a whole family of integrals of (33) 
(y  = 0) satisfying the appropriate boundary conditions. To make the solutions 
for p < 0 unique and appropriate to the application to be made of them the 
condition at infinity was replaced by (a )  f’+ 1 from below as 7 -too, (b ) f ’+  1 as 
rapidly as possible (withf’ < 1). 

In formulating (a )  Hartree suggested that f’+ 1 from above would imply a 
reversal of the normal gradient of the tangential velocity in the boundary 
layer whkh would lead to a solution unlikely to be physically significant, while 
to endorse (b )  he used continuity arguments. On (b)  Stewartson commented 
“ such arguments are not altogether satisfactory, because it is easy to produce 
solutions, different from Hartree’s but satisfying the continuity arguments, 
though (b)  seems to  give the analytic continuation of the solutions for /3 > 0 ”. He 
went on to propose another condition at  infinity which he hoped would be more 
convincing ; however his new criterion yielded exactly Hartree’s solutions for 
the range Po < p < O(f”(0) > 0). Here Po is the lower limit of significance, i.e. 
wheref”(0) = 0, and was found by Hartree to be - 0.1988. 

There are then various comments pertaining to the problem on hand which 
arise out of the preceding discussion. The first concerns the necessity for a 
physical criterion which allows for the occurrence of super-velocities within the 
boundary layer, where by ‘super-velocity’ we imply that t’he value of a velocity 
component within the boundary layer exceeds its corresponding free stream 
value. I f  we question the reason Hartree gives for his condition (a )  and suggest 
that the criterion to be satisfied is that the resultant velocity within the boundary 
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shall not exceed the total free stream velocity for reasons of pressure balance, 
i.e. that the total head within the boundary layer shall not exceed the total head 
on streamlines external to the boundary layer, we see that Hartree’s condition 
(a)  remains correct for the cases he considered while falling within the framework 
of the above suggestion. Moreover, we now have a criterion which allows the 
occurrence of super-velocities to be physically tenable. 

We can also obtain useful information by considering the behaviour of solu- 
tions for large values of 7. As 7 + 00, f‘ and g -+ 1 and again 

which must be finite if the displacement thickness of the boundary layer is finite. 
Hence, when 7 is large, the equations for q(7) = 1 - f ’ (~)  and p ( 7 )  = 1 - g(7) 
approximate to 

q“ + a(7 - A1) q’ - Bpq - 2yp = 0, 

Equation (38) can be integrated directly to give 

where again 5 = (7-A1)Ial&. 

When a > 0 and as 7 -+ +co the general solution of the resultant equation 

q“+a(7 -Al )q ’ -2 /3q  = 2yC exp{-$t2}dt srm 
is 

Since the term extra to (36)+0 as 7+00 irrespective of the sign of ,4 the 
discourse on the existence of solutions of the Falkner-Skan equations will apply 
equally here, so that we shall seek solutions for f ‘ and g which -+ 1 as rapidly as 
possible within the limits of the physical criterion suggested. 

Finally, we refer to the equation of similar profiles for flow with suction, 
namely 

f”’+ajy+/3(1-f~)+yf”= 0, 

where, as in the problem on hand, two parameters are present in effect. For (42), 
Iglisch & Kemnitz (1955) have shown that in the case a = 1, /3 < 0 solutions 
subject tof(0) =f’(O) = O , f ( 0 0 )  = 1 and 0 < f’ < 1 in 0 < 7 < co exist only for 
y 2 yo(/3) where yo(/?) is a function which increases with I/?/. When y = yo(/3) 
there is only one such profile which hasf”(0) = 0 and so gives a separation profile. 
When y > yo(/3) there is a solution in which f’+ 1 more rapidly than any other, 
thus satisfying Hartree’s condition. We might expect, therefore, the existence of 
a similar function yg(Pl) say, such that for y1 = y;(/3J, f”(0) = 0 and that the 



582 Graham Wilks 

solution in this case be unique. Again y$&) will divide the (yl, ,!&)-plane into 
two regions, one of no solutions and one of many solutions, in the latter of which 
the appropriate solution is again that which satisfies the physical criterion sug- 
gested together with Hartree’s criterion ( b )  that f‘+ 1 as rapidly as possible. 

In conclusion we note that (33) and (34) have a trivial solution when P+y = 0,  
namelyf’ = g = the Blasius profile. 

Numerical solutions of the equations of similar profiles have been obtained for 
various (/Il, yl) and are included in tables 1-5 (obtainable from the Editor). 
These solutions demonstrate the occurrence of super-velocities within the 
boundary layer for particular values of P1 and yl.  The separation profile solutions 
for f”(0) = 0 have facilitated the plotting of the anticipated function y$(P1) for 
small y1 (figure 2 ) .  

- 0.4 
11 = -0.4321 - 

- 0.3 

- 0.2 

- 0.1 s 
W O  
?- 

--h 

FIGURE 2. The function rZ(P,). 

4. The perfect cone 
The particular case of a perfectly conical funnel clearly falls within the frame- 

work of a ‘convergent funnel of arbitrary shape’ but it is not one in which the 
assumption of similar profiles will hold, i.e. we cannot expect the velocity pro- 
files within the boundary layer to be independent of distance along the cone. 
However, we can anticipate that the profiles a t  any point will be related to a 
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particular pair of (pl, yl). To establish a comparison of profiles in this way and 
to develop an alternative method of solution to the lengthy iterative procedure 
of Garbsch (1956) we investigate the problem posed in the title by approximate 
techniques. A solution is reached using the integrated form of the boundary-layer 
equations and extending the Wieghardt (1946) two-parameter method of two- 
dimensional flow. Various authors have made rather drastic assumptions in this 
type of work in two-dimensional flows with surprising success. An assumption 
fundamental to the solution that follows is that the relationships between the 
momentum thickness and boundary-layer thickness and between the mixed 
momentum thickness and boundary-layer thickness are basically linear. This 
assumption enables a considerable simplification to be made in the process of 
solving the momentum integral equations. The two parameters for which these 
equations are then solved allow various characteristic properties of the boundary 
layer and of the velocity profile to be determined as functions of distance along 
the cone. 

We consider the steady laminar flow of liquid through a perfect cone whose 
semi-angle is 8. The solution that follows applies equally well to an arbitrary 
channel shape ro(x)  and it is not until later that the specifications of the particular 
shape we have chosen are required. The free stream flow is considered to have 
both radial and swirling components of velocity, the swirling component being 
represented as a potential line vortex placed on the axis of the funnel. 

On the same assumptions outlined in $2 the equations of motion governing 
the flow within the boundary layer will again be (l), (2) and (3). Integrating (1) 
and (2) across the boundary layer and using (3) gives the u-momentum integral 
equation as 

and (44) 

as the v-momentum integral equation which, together with (43), we require to 
solve subject to the boundary conditions 

(iii) u = U ( x  

au 
(iv) - = 0 

az when x = m ,  

(45) 
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and 

As is usual when dealing with the integrated forms of the boundary-layer 
equations the method of solution depends upon the substitution in the momen- 
tum integral equations of a prescribed velocity profile which satisfies some of the 
boundary conditions. It is hoped that this will approximate to the exact profile 
which satisfies all the conditions as well as the momentum integral equation. If 
we consider an analogy with Pohlhausen’s method, setting 

UP = f ( r ,  A J ,  v/V = g ( r ,  A,) and 7 = z. 
&(x) 

would seem appropriate where the prescribed f and g have an x dependence 
through coefficients A, and A, chosen to satisfy certain of the boundary con- 
ditions. Unfortunately, however, such a direct extension of Pohlhausen’s method 
is impossible, since the new form of the boundary conditions gives 

g”(0) = g”(0) = 0 

thus preventing the inclusion of an analogous coefficient A, in profile g. Conse- 
quently we must decide upon an alternative parameter to the second derivative 
of g or even seek two new parameters such as the two component boundary-layer 
thicknesses S,, tIz. In  view of the suggestion of Garbsch’s work that there is little 
change in the g profile and since it is thefprofile which holds most interest, it was 
decided that the second parameter should be incorporated in thefprofile while a 
fixed g profile be established from the boundary conditions on v so that 

UlU = f ( 7 ,  h,,&); v/v = g(7). 

The buundary conditions, after setting 6 = x /c ,  where cis the lengthof the cone 
along a generator, now become 



Swirling flow through a convergent funnel 585 

and I (ii) g" = 0 

(iii) g = 11 1 
(iv) g' = 0 on 9 = 1. 

(v) g" = 0 

Although strictly the conditions at  infinity are only approached asymptotic- 
ally, it is assumed that those conditions can be transferred from infinity to 
z = 6 (i.e. 7 = 1) without appreciable error. 

The profile obtained for g after applying the five boundary conditions (48) to 
an appropriate polynomial is 

g ( 7 )  = 27 - 273 + 94. 149) 

The projile for f(q) = f(q,hl,A2). One of the most accurate approximate 
methods of two-dimensional boundary-layer theory is that whereby the mo- 
mentum integral and energy integral equations are solved simultaneously. The 
particular method adopted by Wieghardt involved the use of a special two- 
parameter class of profiles which fulfilled exactly the boundary conditions (47). 
The main disadvantage of this doubly-infinite family of profiles is that it  becomes 
inadequate in a region of sharply falling pressure where profiles with f > 1 are 
encountered which are normally physically untenable. However, in this problem 
this disadvantage is turned to advantage in that we require a family of profiles 
which in fact allow for the occurrence of super velocities in a region of falling 
pressure gradient. 

Consequently we set 

u/u = f (7, '1 = fl(7) +hlf2(9) +h2f3(7), (50) 

and 

152) I f1(O) = 0;  fi(0) = 0 ;  f' i(0) = 0, 

f2(0) = 0; fL(0) = 1; f l (0)  = 0, 

f3(0) = 0; &(O) = 0; f i ( 0 )  = -2 ,  

so that fl(7) provides a basic profile to which varying amounts of the function 
f2(r) and f3(7) may be added independently to modify the slope and curvature 
respectively at  the surface. Relating A, and A, to the boundary conditions, we 
have 

so that (54) 
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where r, is the x component of the skin friction a t  the wall; 

(ii) -v($) = u dU _--- V2dro = U d U  P d r ,  
, dx ro dx c d t  cr, d t ’  

which becomes 

(55 )  

5. The equations 

substitutions u = Uf(7) and o = (A/r,)g(q), equations (43) and (44) become 
With the non-dimensional variables q = x/S and 5 = x/c  together with the 

and 

If  we now assume a basically linear relationship between the momentum 
thickness 

( ( f  (1 -f 1 d7)  

and the boundary-layer thickness 6 and between the mixed momentum thickness 

and 6, the result is to simplify (57) and (58) to 

(60)  - - %  ( = H )  
so1 (1 - f  Id7 

= s: where 
~ 2 . z  f (1 -f Id7 

and a,, = displacement thickness in the x direction, 

a,, = momentum thickness in the x direction, 
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and 

where 

The profile dependence on x (equivalently E )  is now re-adopted through solu- 
tions for A,, A, which provide a form of perturbation on the assumed linearity. 

Introducing a new parameter G = US2/vc, equations (59) and (63) become 

and 

Now 

r-"+-+- U' 6' = A 2 
ro U 6 G '  

G' 26' U' 

' 

- G=x+v  
which from (66) can be rewritten 

G' 2A, 2rA U' 
G -  G ro U '  

Deriving an expression for U'l U from (65) and (66) enables us to write 

G' ZA, 2 4  
G - G  ro 

(67) 

so that finally 

(A, -A, ) -G-  2 + - -  (69) ( rt  U2  ( 1  +A,) 
1 

G' = 2A4-- 
1 +A1 

and 

while (56) now yields 

On the assumption that initially the boundary layer has zero thickness, we 
have the following boundary conditions 

G(O) = 0; A2(0) = 0 (72) 

in which case, we approach the required solution in the following way. Firstly, 
we insert (73) in (70) and solve a simple quadratic in A,(O). In  conjunction with 
(72) and (69) this value enables us to determine G'(0). We are now in a position 
to proceed with a step-by-step integration of the equation by using the slope of 
G at  a point f to  give an approximation to G at 5 + df .  

It is here that specifications particular to the perfect cone are introduced. 
From continuity considerations the non-dimensional model of the radial velocity 
component at  the edge of the boundary layer is represented by u(f) = I / (  1 - 6)2 
while the swirling component of velocity is simply given by v(c) = K / (  1 - E )  so 



588 Graham Wilks 

that K gives a measure of the relative magnitudes of the swirl and radial com- 
ponents of velocity at the entrance to the cone. 

With the free stream thus specified the equations have been solved for various 
values of K to obtain the displacement thickness for each K .  The results are 
demonstrated in figures 3 and 4. 

0'4 t 
0.3 Binnie & Harris 

H 0.2 4 

0.1 

0 0.1 0 2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 

E 
FIGURE 3. Displacement thickness when the swirl is zero (K  = 0). 

Wilks 

0.3 , 

I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

8 
0.9 

f 
FIGURE 4. Displacement thickness when K = 1. 
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6. Comparison of profiles 
It is clear that $4 4 and 5 are related to the earlier sections of this work in that 

the perfect cone is simply a particular case of a ‘ convergent funnel of arbitrary 
shape’. However, as can be seen in $5 it is not a shape for which the velocity 
profile within the boundary layer remains ‘similar ’. Nevertheless, a comparison 
of results is possible since we anticipate that the profile at any particular stage 
of the cone wall will be connected with a particular pair of (B1, yl) of the similarity 
solutions. 

First, we note that from (5) 

(ro6)’/ro& = ([a/P1 - 1) (U‘lU) 

so that considering the specifications made in the cone flow solution we have 

Clearly when 6’ = 0, i.e. at the point where the boundary layer thickness is 
greatest, we always have 

/? = 2a, i.e. B1 = 2. (74) 

Consequently, we can say that the similarity profile corresponding to that 
obtained by the approximate method at  the point where the boundary thickness 
is at  a maximum is one involving p1 = 2 ,  while y1 is determined from the initial 
specification of the swirl component of velocity. Immediately this suggests a 
comparison of profiles in the trivial case (rl = 0) = (K  = 0) ;  p1 = 2 for which the 
similarity profile is well known. 

In general, however, a comparison of the two derived profiles at  any point is 
possible, so long as we can determine the scaling factor l/a. 

By definition 
6(ro US)‘ a=--- 

r o w  ’ 

= G  (; -+-+- :A 3 
where again G = US2/uc, so that in fact, in the case of the cone from (66), 

a = A,. 

2h2/a = Pl+Y1 
We also have from (56) 

and finally, by definition and specification, 

(75) 

2y1/p1 = K2( 1 - $)2. (79) 

Thus simple calculations involving (77), (78) and (79) enable the similarity 
values PI, y1 to be determined corresponding to a given approximate method 
profile at any point along the cone. Various comparisons are demonstrated in 
figures 5-9. 
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I I i i i i i i 

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 

7 
FIGTJRE 5. Profiles for zero swirl: x , approximate solution; 0, similarity solution. 

b . 
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0.2 

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 

?I 
FIGURE 6. (i) Approximate solution K = 1, 5 = 0.1. (ii) Similarity solution p, = 0.5102, 

y1 = 0.2066. 
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1 
FIGURE 7. (i) Approximate solution K = 1, 6 = 0.2. (ii) Similarity solution PI = 1-1960, 

y1 = 0.3826. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

7 

y1 = 0.8820. 
FIGURE 8. (i) Approximate solution K = 2, 6 = 0.1. (ii) Similarity solution = 0.5445, 
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1.2 - 

1.0 - 

0.8 - 

5 -. 0.6 - 
3 

0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 0.9 

7 

FIGURE 9. (i) Approximate solution K = 2, 5 = 0-2. (ii) Similarity solution Pl = 1.2400, 
y1 = 1.5870. 

7. Discussion of results 
It is important to keep the problem in physical perspective, particularly with 

reference to the required conditions under which the solution was derived, namely 
steady, laminar flow. We have demonstrated that when both radial and swirling 
components of velocity exist in the free stream then the phenomenon of super- 
velocity occurs, i.e. the pressure gradient (breakdown) contribution to the 
boundary-layer velocity in the exit direction due to swirl (as outlined by Taylor) 
is sufficient in some instances to enhance the normal reduction of this velocity 
component by friction to such an extent as to cause the velocity within the 
boundary layer to exceed the corresponding free stream component in that direc- 
tion. The introduction of swirl into the flow thus tends always to increase the 
amount of fluid discharged and in fact results for larger values of K demonstrate 
negative displacement thicknesses, i.e. discharge efficiencies greater than the 
equivalent ideal flow. This is not as unacceptable as it appears at first sight since 
Taylor’s pure swirl problem demonstrates finite radial velocities within the 
boundary layer despite the absence of a corresponding free stream component 
and hence provides a limit example of a discharge efficiency greater than that 
of its equivalent ideal flow. 

It must be remembered that this discussion of efficiency relates to flows in 
which fluid occupies the entire funnel and does not allow for flows in which a 
vortex core has been established. Binnie & Hookings (1948) have examined the 
transition from one state to the other in terms of swirl magnitude and show that 
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flows occur for only relatively small values of swirl in which the fluid occupies 
the whole funnel. Hence we can only conclude that the more swirl that can be 
introduced compatible with steady, laminar, core-free flow, the more efficient 
will be the discharge compared with the corresponding radial flow. 

Finally we note that agreement between the approximate method results and 
results of previous workers is good. Binnie & Harris (1950) remark that when 
the swirl component is zero, comparison may be made with Mangler’s work on 
exact solutions of the axially symmetric boundary-layer equations. Although 
Mangler’s original similarity solution for this case has been questioned in recent 
literature, Brown & Stewartson (1965) resolved the problem when they demon- 
strated that similarity solutions with algebraic decay can be limit solutions of 
the full boundary layer equations with exponential decay. Their work confirmed 
the validity of the assumption that the outer flow near the apex is potential sink 
flow, i.e. U cc r2 and hence corroborated Mangler’s (1948) solution. The fact 
then that in the approximate method herein the non-dimensional free stream 
radial component of velocity was taken to be of t,he form o(<) = (1 - 0 - 2  would 
suggest that there is some agreement between the estimated displacement thick- 
ness in that region. Mangler in fact suggests the result that the displacement 
thickness near the apex of the cone is given by 0.587 (1 - <)$ and it can be seen 
frcm the graph of displacement thickness for zero swirl how close is the agree- 
ment between this estimate and the approximate method results. That this is so 
is no doubt attributable to the highly favourable pressure gradient in this region. 
The comparison of velocity profiles provides a further confirmation of the useful- 
ness of the approximation of § 5 when applied in favourable well-behaved circum- 
stances. 

The author wishes to express his gratitude to Mr E. J. Watson for his con- 
tinued support during the course of this research. The work presented here was 
completed while the author was a research student a t  Manchester University, 
England. 
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